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Duality between normal and superconducting junctions of multiple quantum wires
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We study junctions of single-channel spinless Luttinger liquids using bosonization. We generalize earlier
studies by allowing the junction to be superconducting and find new charge nonconserving low-energy fixed
points. We establish the existence of g« 1/g duality (where g is the Luttinger liquid parameter) between the
charge-conserving (normal) junction and the charge nonconserving (superconducting) junction by evaluating
and comparing the scaling dimensions of various operators around the fixed points in both the normal and
superconducting sectors of the theory. For the most general two-wire junction, we show that there are two
conformally invariant one-parameter families of fixed points which are also connected by a duality transfor-
mation. We also show that the stable fixed point for the two-wire superconducting junction corresponds to the
situation where the crossed Andreev reflection (an incoming electron is transmitted as an outgoing hole) is
perfect between the wires. For the three-wire junction, we study, in particular, the superconducting analogs of
the chiral Dp and the disconnected fixed points obtained earlier in the literature in the context of charge-
conserving three-wire junctions. We show that these fixed points can be stabilized for g<<1 (repulsive elec-

trons) within the superconducting sector of the theory which makes them experimentally relevant.
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I. INTRODUCTION

Recently, Y junctions of several quasi-one-dimensional
(ID) quantum wires (QW) have been realized experimentally
in single-walled carbon nanotubes.!? Junctions of this kind
are of importance for potential application in the fabrication
of quantum circuitry. Theoretically, junctions of QW have
been studied from several points of view3~2 using bosoniza-
tion, weak interaction renormalization-group (WIRG) meth-
ods, conformal field theory, and functional renormalization-
group methods. The junction has also been variously taken to
be enclosing a flux, having a resonant level, having a Kondo
spin, and having a superconductor using one or the other
techniques mentioned above.

A comprehensive study of the junctions of three QW en-
closing magnetic flux was carried out by Chamon and
co-workers,®” where the wires were modeled as single-
channel spinless Luttinger liquids (LL), and conformally in-
variant charge-conserving boundary conditions were identi-
fied in terms of boundary bosonic fields which had
correspondence with a host of fixed points in the theory.
However, superconducting junctions of multiple 1D QW
have not been studied in the past for the case of arbitrarily
strong electron-electron interactions.

In this paper, we study transport across multiple wires
connected to a superconductor as depicted in Fig. 1. In the
subgap region, normal reflection and transmission of the
electrons cannot occur since charges can enter and exit the
superconductor only as a Cooper pair. But due to the prox-
imity effect, two new processes can occur. One is the phe-
nomenon of Andreev reflection (AR) in which an electron-
like quasiparticle incident on normal-superconductor (NS)
junction is reflected back as a hole along with the transfer of
two electrons into the superconductor as a Cooper pair. The
second even more interesting process is “crossed Andreev
reflection (CAR),”>-30 whereby an electron from one wire
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pairs with an electron from another wire to form a Cooper
pair and jumps into the superconductor, emitting a hole in the
second wire. (Note that for a singlet superconductor, the two
electrons have opposite spins.) This can take place provided
that the distance between the two wires L is less than or
equal to the phase coherence length of the superconductor.
Thus, for an incident electron, holes are either reflected or
transmitted across the junction, and total current conserva-
tion is taken care of by the Cooper pairs jumping into the
superconductor. However, as far as the multiple wire system
is concerned, current is not conserved. The system is mod-
eled as several 1D LL connected to a superconducting junc-
tion. We assume that the width of the superconductor be-
tween any two wires L=a, where «a is the phase coherence
length of the superconductor. For simplicity, we assume that
the superconductor is a singlet. Thus spin is conserved in
transport across the superconductor, and we can confine our
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FIG. 1. (Color online) Multiple wires connected to a supercon-
ducting junction within the phase coherence length a (L<a) of the
superconductor. The processes corresponding to an incident elec-
tron on one wire undergoing CAR (amplitude represented as 74) and
direct transmission (amplitude represented as 7) to a different wire
across the superconductor are depicted in the figure.
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FIG. 2. (Color online) Stable fixed points of (a) normal junction
(electron is completely reflected) and (b) superconducting junction
(electron is perfectly transmitted as a hole).

study to spinless LL. For this system, we see that the super-
conductor can be modeled simply as a (charge-violating)
boundary condition on the bosons in the wire. We also find a
rich fixed-point structure that generalizes the earlier structure
of fixed points found when multiple wires are connected to a
normal junction.

The superconductor explicitly violates charge conserva-
tion at the boundary, thereby it allows for a generalization of
the study of Chamon et al.® to the charge nonconserving
sector. We find that there exists a “normal junction—
superconducting junction (N-S)” duality given by g« 1/g (g
is the LL parameter) between the charge-conserving (normal)
and the charge nonconserving (superconducting) sectors of
the theory for junctions of any number of QW. As a conse-
quence of this duality, many of the fixed points that were
unstable for the normal junction for g<<1 turn out to have
stable superconducting analogs. The stability of the fixed
points mentioned here is calculated with respect to perturba-
tions which are within the normal sector if the fixed point is
in the normal sector and within the superconducting sector
for the fixed point in the superconducting sector. The main
results obtained in this paper in the context of two-wire and
three-wire junctions are:

(a) For the most general two-wire junction, we show that
there are two conformally invariant one-parameter families
of fixed points which are connected to one another via a
duality transformation. We also show that the normal sector
and the superconducting sector of the theory correspond to
two distinct points on each of two one-parameter families of
fixed points. Hence other than these special points on the two
one-parameter families, loosely speaking, the rest of the
fixed points represent seminormal (semisuperconducting)
junction. We find that the stable fixed point within the super-
conducting sector of the theory corresponds to a situation
where an incoming electron is completely transmitted as an
outgoing hole, as shown in Fig. 2(b). This is the CAR. This
fixed point is shown to be dual to the unstable connected
(perfectly transmitting) fixed point of a two-wire normal
junction due to the N-S duality.

(b) For the three-wire junction, we restrict our study to the
special cases of normal and superconducting sectors. Within
each sector, the theory of the three-wire junction effectively
reduces to the most general theory of the two-wire junction
as in both cases; it is a theory of two independent bosonic
fields. For the three-wire junction, out of the three indepen-
dent bosonic fields, one is pinned either by the charge-
conserving (normal) boundary condition or by the charge
nonconserving (superconducting) boundary condition leav-
ing behind only two independent fields. Hence for the three-
wire superconducting junction also, one gets two confor-
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FIG. 3. (Color online) (a) Dp fixed point for the normal junc-
tion. 2/3 charge is transmitted on each of the other wires and —1/3
charge is reflected and (b) SDp fixed point for the superconducting
junction. —2/3 charge is transmitted on each of the other wires and
1/3 charge is reflected. Note that we have considered incoming
electrons only along one of the wires.

mally invariant one-parameter families of fixed points, which
are connected to one another via a duality transformation. Of
all these fixed points for the system of a superconducting
three-wire junction, we shall mainly focus on two which are
of interest both theoretically and experimentally:

(i) SDp fixed point. This fixed point represents a junction
with Z; symmetry between the three wires having maximal
CAR between any of the two wires. In other words, this is a
fixed point where an incoming electron has nonzero compo-
nents on all three wires as outgoing states. —2/3 of the
charge is transmitted on the two other wires (hole transmis-
sion) and 1/3 of the charge is backscattered (electron reflec-
tion). Note that the net change in charge at the boundary is
e—(-2/3-2/3)e+(1/3)e=2e. This can be identified as the
charge nonconserving analog of the Dp fixed point found in
Ref. 7. The SDp fixed point is shown to be stable for g
< 1/3 within the superconducting sector and is identified as
dual of the charge-conserving Dp fixed point via the N-S
duality. These fixed points are shown in Fig. 3.

(ii) Sy~ fixed point. These two fixed points, Sy, and
Sx_, represent a superconducting three-wire junction with
maximally asymmetric interwire CAR with broken time-
reversal symmetry. An incoming electron along wire 1 is
transmitted as a hole in wire 2, and so on, cyclically, as
shown in Fig. 3(b) (or the other way around). They are the
superconducting analogs of the chiral fixed points [Fig. 3(a)]
found earlier.>” Unlike their charge-conserving analogs,
these fixed points are stable for 1/3<<g<{1. As can be seen
from the stability window of Sy, these are the most rel-
evant fixed points from the experimental point of view as
they can be stabilized even for a very weakly interacting
(g=1) electron gas provided the charge-conserving pertur-
bations are weak enough.

An extensive study of the renormalization-group evolu-
tion of several wires connected to a superconductor was car-
ried out very recently by Das et al.,'®!! where conductances
were studied in the Landauer-Buttiker language of transmis-
sion and reflection of electrons. Interactions were taken into
account perturbatively using the WIRG method. But for ar-
bitrarily strong interelectron interactions, one needs to use
bosonization. Also, since the WIRG procedure is essentially
a one-particle approach, it could only access those fixed
points that could be expressed linearly in terms of fermions.
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To access other fixed points, one needs to use the technique
of bosonization. Note that some of the fixed points obtained
from the fermionic WIRG method can be identified with
some of the fixed points obtained using bosonization by tak-
ing the g close to unity limit, but in general this is not true. In
this paper, our aim is a comprehensive study of the system of
multiple wires connected to a superconductor and to identify
the various fixed points of the system, only some of which
were obtained in the earlier approach.

In what follows, we first describe bosonization of super-
conducting junction of N number of LL wires in Sec. II. In
Secs. I A and II C, we apply this method to single-wire,
two-wire, and three-wire junctions and calculate scaling di-
mensions of various operators in the theory. In Sec. II D, we
give an expression for conductance and calculate it for vari-
ous fixed points obtained in Secs. II B and II C. Finally, we
conclude with a discussion on general issues related to the
physics of LL junctions in Sec. III.

II. BOSONIZATION OF THE SUPERCONDUCTING
JUNCTION OF LL QW

The (spinless) electron field can be written in terms of
bosonic fields as

lﬂ(x) — Foeikpxei[ﬁ(x)+¢(x)] + Fle—ikpxei[¢(x)—0(x)]

>

where F, and F; are Klein factors for the outgoing and in-
coming fields, respectively, ¢(x) and 6(x) are the dual
bosonic fields, and k is the Fermi momentum. The wires are
modeled as spinless LL on a half line (x>0); i.e., here we
use a folded basis for describing the junction such that all the
wires lie between x=0 and % and the junction is positioned
at x=0. Hence the action is given by

w N
s:fdrf xS [léiohi{g(cﬁ;)%1((9{)2}},
0 =l LT 27 8
(1)

where prime (dot) stands for spatial (time) derivative,
¢i(x.0)=(bio+ P12 and O,(x.0)=(do— b /2 i=(v/g)6;
and 6;=(vg)d!. ;o and ¢ are the chiral outgoing and in-
coming bosonic fields.

The action can also be written in terms of purely the ¢;
fields or the 6; fields and as is well known, the two actions
are identical with the replacement of g« 1/g. The total den-
sities and the currents in each wire can also be written in
terms of the incoming and outgoing fields: the density p
=po+py, With po,= = (1/27) ¢y, and the current j=j,—jj,
with jo,= = vp(1/2) ¢y, To complete the theory, the ac-
tion needs to be augmented by a boundary condition at the
origin which represents the physics at the junction.

Now following the method we used in Ref. 9, it is pos-
sible to represent the junction in terms of a splitting matrix;
i.e., we connect the incoming and the outgoing current fields
as Jiolve0=Cirjirlreo (Ref. 31) through a current splitting ma-
trix, C;;. For charge-conserving fixed points, the net current
flowing into the junction must be zero. Hence all charge-
conserving fixed points must satisfy the constraint that X;j;
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=0. In terms of the bosonic fields, this implies that =;¢/,=
-2,¢;,. Now we can write a field splitting boundary condi-
tion as

¢i0 = ‘Cij(ﬁjl, (2)

which is consistent with j;o=Cj;; and 2,/ =—2,¢;,. While
writing the field splitting relations in the above form, we
have ignored possible integration constants, inclusion of
which makes no difference to the evaluation of scaling di-
mensions of operators around various fixed points. Hence,
the current splitting and the field splitting matrices are taken
to be the same.

For the boundary condition or equivalently for the matrix
(j; to represent a fixed point, it should not flow under renor-
malization group (RG). This means that it has to be scale
invariant or equivalently in 1+1 dimensions, conformally
invariant. Here, this condition simply means that the trace of
the energy-momentum tensor of the bosonic fields has to
vanish at the boundary (x=0). This yields the following
condition:3>33

2 ¢i<P," |x=0 =0, (3)
i=1

where ¢; are the mutually independent fields such that for a
junction of N-wire system with N’ constraints, m=N-N'.
Hence, for two or more fields coupled to the junction, one
can have mixed boundary conditions, besides the Dirichlet
(¢;=0) and Neumann (¢;=0) boundary conditions. For m
=2 (which is the case for the most general two-wire junction
or the three-wire case in either the purely charge conserving
or the purely superconducting limit), there are two indepen-
dent families of solutions possible to the above equation
given by

o =—ag,, @ey=ae, (4)

@y =ae|, (5)

where a is a real constant, independent of x and 7. In terms of
the 2 X 2 field splitting matrices, it is easy to check that this
is equivalent to taking

C S C Y
c0=( : ‘), ce=(2 2), 6)
! -5 C 2 S —C

where c;=cos 6; and s;=sin 6, are real parameters and C(,]
and ng are the field splitting matrices at the junction for the
¢ fields. The two family of solutions are connected via du-
ality transformation, which we call D,,l 6y D 0,6, duality can
be accomplished by either ¢« ¥, or ¢,« U,. For the two-
wire system, ¢; and ¥; can be identified with the ¢; and 6,,
respectively, with i being the wire index, and C s, and ‘ng can
be identified with the current splitting matrices for the two-
wire system. For the three-wire case, ¢; and J; have to be
taken to be linear combinations of ¢;s and 6;s after imposing
normal and superconducting boundary conditions. For these
one-parameter families it turns out that the incoming and
outgoing (bosonic) boundary fields satisfy the bosonic com-
mutation relations of the bulk given by [, (x), do(x")]

Q1=—ap,,
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=i sgn(x—x'); so imposing bosonic commutation rela-
tions gives no new constraints.
The boundary conditions may also be written in terms of

the Boguliobov transformed free bosonic fields, ¢;,,; which
are defined as’

1 ~ -
bio= E[(g + 1D io— (g =1yl (7)

b=l (g~ DFo+ (g + DF). ®)
2\g

For the tilde fields, the boundary condition ¢;o==C;;¢;; for
the N-wire junction becomes

J’iO = Rij(?)jl’
with

,_Le+DC+(g-1I]
T lg-DC+(g+ DIT

Thus R is the matrix that connects “free” incoming and out-
going bosonic fields whose dimensions we know how to
compute. Now notice that when C2=I, the above equation
simplifies to (;~S,~0=Cijq~5j, but not otherwise. This implies that
for the case of C2=1 both the interacting fields (¢;,;) and the
free fields (o)) satisfy the same boundary condition. Also
note that current conservation implies that the elements of
the splitting matrix C are real and satisfy the constraint,

> Cy=1. (10)

)

Furthermore the constraint that both the incoming and out-
going fields satisfy bosonic commutation relations indepen-
dently implies’

E‘Cizj: , ECijCiH,j:O’ (11)
J J

which is essentially the same constraint that is obtained from
imposing the constraint of scale invariance or requiring C;;
to be a fixed point.

For the three-wire system, most of the fixed points studied
in Ref. 7 can be obtained as C matrices satisfying the above
constraints. For instance, the disconnected normal (DN,)
fixed point where each of the wires independently has a Neu-
mann boundary condition on the ¢ field at origin corre-
sponds to C=I and the Dp fixed point has C matrix of the
form,

-13 23 23
c=| 23 -13 23 |. (12)
23 23 -1/3

It turns out that several other C matrices obeying the con-
straints mentioned above fall into the two one-parameter
families given in Eq. (6) and hence can be identified as con-
formally invariant fixed points. Also note that both the dis-
connected DN5 and the above Dp fixed points belong to the
special class of C;; matrix for which C2=1
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Physically, the disconnected DN; fixed point (called N in
Ref. 7) corresponds to a situation where the conductance
between any two wires is zero, whereas the Dp fixed point
corresponds to a situation where there is a perfect symmetry
among the three wires, and the conductance between any two
wires has the maximal value allowed by Z; symmetry. Note
that this maximum is larger than the maximal interwire con-
ductance that would be allowed within a free-electron picture
for the maximally conducting Z; symmetric case’ and this is
related to the fact that for the bosonic Z; symmetric fixed
point, multiparticle scattering leads to an enhancement of
conductance as was discussed in Ref. 7. In Sec. II D, by
calculating the conductance, we will show that for the analo-
gous situation in the superconducting sector, this is no longer
true, and in fact, there is a reduction in the conductance as
compared to the free-electron case. The difference in the pro-
cesses participating in the two sectors can also be seen in
Fig. 3.

The charge-conserving constraint at the junction implies
that the boundary condition on the center of mass (CM) field
defined as ¢dey==;¢; always has to be Neumann, i.e., Z¢;
=3 ¢;p+c, where c is a constant. However, in the presence of
a superconducting junction strongly coupled to the wires,
there will only be charge nonconserving processes at the
boundary (i.e., it can either absorb or emit a Cooper-pair),
and charge-conserving processes will be suppressed (at ener-
gies below the superconducting gap). Now if we impose Di-
richlet boundary condition on the CM field, it turns out that it
gives the correct boundary condition at the junction that con-
verts an electron to a hole and vice versa and mimics the
existence of a superconductor at the junction. This leads to
new fixed points, which have not been explored in Ref. 7.
This is one of the main points of our paper.

In order to establish the duality between the normal and
superconducting junctions, let us consider the case of an NS
junction where a single QW is connected to a superconductor
(this case was considered briefly in the Appendix of Ref. 7)
in the subgap regime. In the limit, when the coupling be-
tween the wire and the superconductor is strong (i.e., there is
no backscattering of electrons), the system is in the perfect
Andreev limit, and hence, an incoming electron current is
completely reflected as an outgoing hole current, i.e., j;=
—jo- We call this as the Andreev (A,) fixed point. This im-
plies that the boundary condition on the ¢(x=0,7) field is
Dirichlet [or equivalently Neumann on the dual 6(x=0,?)
field] and the total current at the junction is given by j=j,
—jo=2j;- This can be easily generalized to a system of su-
perconducting junction of N wires.

For the N-wire system, we must have the sum of the in-
coming electron current equal to the sum of outgoing hole
current, which means that X;j;;+2,j,0=0 at the junction. In
turn, this implies that =,p,=0, i.e., the total electron density
is zero at the junction. This is of course the correct boundary
condition as the electron density is expected to vanish at the
junction due to the finite superconducting gap. In terms of
the splitting matrix C, the above constraint translates into the
condition,
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Ecij=_la (13)

in contrast to the current conserving constraint [Eq. (10)].3*
The other constraints coming from the bosonic commutation
relations that ¢;,,; have to satisfy, given by Eq. (11), still
remain valid. As mentioned earlier, these matrices fall into
the two one-parameter families given in Eq. (6); thus en-
abling us to identify them as fixed points. In fact, given a
(;; matrix representing a fixed point in the normal sector, its
dual fixed point in the superconducting sector can be ob-
tained by transforming C;;— —C;;. It can be easily checked
that this prescription of finding the dual fixed points is con-
sistent with the constraints given by Egs. (10) and (13).

The duality between the charge conserving and the super-
conducting boundary conditions is now obvious and can be
understood physically as follows. Current conservation im-
plies that the net current should be zero at the junction, while
superconductivity implies that the net electron density at the
junction has to be zero due to the existence of the gap for
single electron excitations in the superconductor. So, in the
current conserving case, the boundary condition on the ¢cpy
field is Neumann [or Dirichlet on fgy field, i.e., 2;5,(0,1)
=0], while for the superconducting case, the boundary con-
dition is Dirichlet on ¢¢py field [or Neumann on Ogy field,
ie., 2,p(0,1)=0]. As the 6 and the ¢ fields have g« 1/g
duality among themselves, it automatically extends to the
various fixed points in one sector and their analogs in the
other sector, which are obtained by imposing further bound-
ary conditions on the fields other than the CM field. We
confirm this by explicitly calculating the scaling dimension
of operators corresponding to all possible perturbations
around these various fixed points.

Note however that the N-S duality exists over and above
the dualities that exist within each sector. For instance,
within the charge-conserving sector for the two-wire system,
there exists a duality between weak backscattering (strong
tunneling) and strong backscattering (weak tunneling) limits
with g« 1/g interchange. Similarly in the superconducting
sector also there exists a duality between weak backscatter-
ing of holes or weak Andreev reflection (strong transmission
of holes or strong CAR) and strong backscattering of holes
or strong Andreev reflection (weak transmission of holes or
weak CAR) with g« 1/g. This essentially follows from the
Dgl 0, duallty

We will now explicitly consider the cases where there are
N=1, 2, and 3 wires coupled to the superconductor.

A. Single-wire junction

We start with the simplest case of the NS junction where
the number of wires is N=1. In this case, there are two single
element splitting matrices that satisfy the constraints of Eq.
(11), and only one of them satisfies the superconducting con-
straint of C;;=—1. In that case the wire is perfectly connected
to the superconductor and an incoming electron is scattered
back perfectly into a hole (see Fig. 4). This is the perfect
Andreev limit described before where j;=—j,o. The scaling
dimension of the electron backscattering operator lﬁ Yo (the
subscripts //O on the electron fields refer to incoming and
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FIG. 4. (Color online) (a) Andreev and (b) normal reflections
from a superconductor.

outgoing branches) around this fixed point can be easily
found by bosonizing it as i i, ~ e~'#1e'%0. Upon writing it in
terms of the Boguliobov transformed fields, we can compute
the scaling dimension of this operator to be 2g. Note that the
backscattering operator we have turned on around the charge
nonconserving fixed point is charge conserving.

The other fixed point corresponds to the charge-
conserving case where the splitting matrix is C;;=+1. Here
the incoming current is perfectly (normal) reflected (j;;
=J,0) and the wire is completely disconnected from the su-
perconductor. We can now turn on a charge violating pertur-
bation, such as the AR operator, i, ~ e'%e!%0. The scaling
dimension of this operator turns out to be 2/g. This estab-
lishes the g« 1/g N-S duality between these two cases.

B. Two-wire junction

Let us now go on to the case of the NSN junction where
the number of wires is N=2. In this case, the current splitting
matrix is 2 X 2. Unlike the previous case (NS junction), here
we find that there are two fixed points in the superconducting
sector and they are represented by the following two matri-

ces:
! 0 —l ’ —1 0 '

The matrix C; corresponds to a situation where the two
wires are individually tuned to the disconnected Andreev
(A,) fixed point (electrons are reflected back as holes),
whereas the matrix C, implies perfect CAR between the
wires and is called the crossed Andreev CA, fixed point
(electrons perfectly transmitted as holes). As can be easily
checked, C, is a particular case of C; (6;=m) and C, is a
particular case of Gy, (6,=—/2) given by Eq. (6). It is easy
to see that these two cases are analogous to the completely
reflecting (disconnected) and completely transmitting (fully
connected) cases for the normal two-wire junction.

Let us now turn on tunneling or backscattering operators
as perturbations around these fixed points. Around C;, which
is fully disconnected, we switch on a CAR operator which
will convert an incoming electron in one wire to an outgoing
hole in another, given by 1o~ e'®7e’?20. The dimension
of this operator can be computed by re-expressing the opera-
tor in terms of the Boguliobov transformed fields.

Since the matrix C; is just the negative of the identity
matrix, it is trivial to see that the Boguliobov transformed
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fields also satisfy the same boundary conditions as the origi-
nal fields. The scaling dimension can easily be computed and
it turns out to be equal to g. Analogously, around the C, fixed
point, where an electron injected in the first wire gets per-
fectly transmitted as a hole in the second wire, we can switch
on the AR operator, ;o ~ e'%e'?0. Again the bosonic
fields can be re-expressed in terms of the Boguliobov trans-

formed &s fields, and since C%zﬂ, the tilde fields also satisfy
the same boundary conditions. Here, we find that the An-
dreev backscattering operator has the dimension 1/g. Hence,
within the superconducting sector, for repulsive interelectron
interactions, g <1, the CA, fixed point is a stable fixed point
[shown in Fig. 2(b)], while the fully disconnected A, fixed
point is unstable. This is in contrast to the normal charge-
conserving junction of two wires where the “cut” wire
[shown in Fig. 2(a)] corresponds to stable fixed point for
repulsive interactions. Again this can also be understood in
terms of the g« 1/g N-S duality.

In the above analysis, we have restricted ourselves to ei-
ther Neumann (for normal) or Dirichlet (for superconduct-
ing) boundary conditions on the CM field and then analyzed
the system, which essentially reduces the system to a single
boson (m=1) problem. However, once we allow for arbitrary
charge nonconservation, then for the two-wire system, both
the CM field 5(¢b;+¢,) and the relative field 5(¢;— ),
enter the picture. Hence, the system can no longer be reduced
to a single boson theory as could be done when the charge
conserving or the superconducting boundary condition re-
moved the CM field completely from the scene.

Hence in general for a two-wire junction, we have a genu-
ine m=N=2 problem. As mentioned earlier, in terms of these
two fields, scale invariance of the boundary condition gives
us two one-parameter family of fixed points which are con-
sistent with bosonic commutation rules imposed on the in-
coming and outgoing fields. The two families are connected
via duality transformation (¢« 6) on either the ¢, field or
the ¢, field where 1 and 2 are wire indices. So in conclusion,
the important point to note is that except for #;=0 (cut) and
0,=/2 (healed) for the normal case or 6,=7 and 6,=
—mr/2 for the superconducting case, these fixed points belong
neither to the category of charge-conserving fixed points nor
to the category of superconducting fixed points. A similar
isolated fixed point called Andreev-Griffiths (AG) fixed point
which allowed both superconducting and charge-conserving
transmissions and reflections was seen earlier in WIRG for-
malism by Das et al.'%!!

th)

C. Three-wire junction

Finally, let us consider the case where there is a supercon-
ducting junction of three LL wires, i.e., N=3 and the current
splitting matrix is 3 X 3. Here too, just as in the normal three-
wire case,” we do not have a complete classification of all the
fixed points of the system in general. However, a partial
classification within the superconducting or the normal sec-
tor can be obtained in terms of the current splitting matrix
which can be derived from the Cy and C, matrices given in
Eq. (6). For the superconducting case, it is easy to see that
we will have a fixed point corresponding to the situation
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FIG. 5. (Color online) (a) DN; and (b) A; fixed points.

where each individual wire is tuned to the Andreev fixed
point (see Fig. 5) at the junction. This is the disconnected
Andreev (Aj) fixed point. We will also have the SDp fixed
point as mentioned earlier. These are the analogs of DN5 and
Dp fixed points for the normal sector. We will focus on these
fixed points first. The current splitting matrices representing
the A5 and the SDp are given by

-1 0 0 13 -2/3 -2/3
Ca,=| 0 -1 0 |, Cgp=|-2/3 13 -273
0 0 -1 -2/3 -2/3 1/3

(15)

Let us now compute the stability of these two fixed points.
Around Aj;, the CAR operator is given by o~ e'%ile'%io,
where j#i and i,j=1,2,3. This is the same operator that we
considered in the two-wire case around the A, fixed point,
and the dimension of the operator of course turns out to be g
because essentially it only involves tunneling between two
wires that are disconnected from each other. This is dual to
the scaling dimension of the normal tunneling operator
around the disconnected three-wire fixed point, which is 1/g.
Thus, it gives a simple check of the general N-S duality.

A more nontrivial check is to consider the stability of the
SDp fixed point. The general N-S duality implies that this
should be dual to the usual Dp fixed point of the normal
junction. Let us first consider the operator corresponding to
CAR, i.e., ihio~ €'%e”%0. Since the matrix (Cp_)*=1, the
Boguliobov transformed bosons also satisfy the same bound-
ary condition as the original fields, as mentioned earlier.
Hence the dimension of the operator can easily be computed
to be 1/3g. Now consider the scaling dimension of the nor-
mal tunneling operator, ¢,~,¢;—0 ~ ¢'%ile=1%j0 around the normal
Dp fixed point. This has been computed in Ref. 7 to be g/3.
Thus the dimensions of these operators are related by
g« 1/g N-S duality. Similarly, if we consider the AR opera-
tor in each wire, ;1 ~ e'®ile'%0, its dimension can be com-
puted to be 4/3g. This is dual to the dimension of the usual
reflection operator, 1, ~ e'%’e~'%0 in a normal junction
which was earlier found to be 4g/3.7

Finally, let us consider the tunneling of the incoming elec-
tron in wire 7 to the incoming electron in wire j. Here, since
the tunneling happens within the incoming channels before
the electron reaches the junction, the operator is given by
¢,~,lﬂ;,~e"¢i’e"'¢ﬂ. In other words, this is a charge-conserving
operator, unlike the two other (charge-violating) operators
for which we calculated the scaling dimensions. Hence the
third tunneling operator that we consider as a perturbation
around the SDp fixed point is the same as that for the Dp
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fixed point. However, the scaling dimension of this operator
computed around the SDp and the Dp fixed points turns out
to be different because the boundary condition explicitly en-
ters the computation of the scaling dimensions. They turn out
to be 1/g and g, respectively, which is in accord with the
N-S duality.

To sum up, we find the scaling dimensions of the three
classes of operators (%0, Yithios z//,-,w;fl) around the SDp
fixed point to be (1/3g, 4/3g, 1/g). These are connected
by N-S duality to the three classes of charge-conserving op-
erators (llfill,[lj»o, z,/fi,z,bjo, z,/fi,z,bj-,) around the Dp fixed point
which turn out to be (g/3, 4g/3, g). This actually exhausts
the set of all possible operators allowed by symmetry within
the superconducting sector around the SDp fixed point. The
important point to note is that for values of g such that g
<1/3, all these operators are irrelevant. So in the limit
where the junction is tuned such that there are no charge-
conserving normal tunnelings or reflections at the junction,
this fixed point is stable for g<<1/3.

One can also perturbatively include the effect of charge-
conserving tunneling and reflection processes at the junction
and calculate their scaling dimensions. Such operators are
also connected by the same N-S duality transformations be-
tween the charge conserving and the superconducting sec-
tors. The charge-conserving tunneling operator, 1,0,-,1,/1;0
~ ¢!%ie™i%ji between two wires across the superconducting
junction around SDp fixed point is found to have a scaling
dimension (2g?+3)/3g. This continues to be irrelevant for
g<1/3; hence it does not disturb the stability of the SDp
fixed point. But the scaling dimension of the normal reflec-
tion around SDp fixed point turns out to be 2g/3, which is
relevant for g<1. Hence, we conclude that the SDp fixed
point is stable within the superconducting sector for g
<1/3, but including the normal reflection operator will
make it flow to the disconnected charge-conserving fixed
point. We can also view the SDp fixed point as a strong
tunneling limit of the CAR processes around the Aj fixed
point. This is analogous to the strong coupling—weak cou-
pling duality between the Dp and the DN; fixed points for
the normal three-wire system as was pointed out in Ref. 7. If
we now compare the scaling dimensions of the CAR opera-
tor between the two fixed points, these are g and 1/3g, re-
spectively, for the Az and the SDp fixed points. In contrast,
for the disconnected fixed point and Dp fixed point of the
normal wire, they are 1/g and g/3, respectively. Hence the
duality 1/g < g/3 for the normal case goes over to g« 1/3g
in superconducting case in agreement with the N-S duality.

Next we consider the Sy fixed point. This fixed point is
described by the following two current splitting matrices
given by

0 -1 0 0 0 -1
cG.={0o o0 -1 cl=l-1 0 o0
-1 0 0 0 -1 0
(16)
Here the subscript S stands for superconducting case and the

+ for chirality. The C3, fixed point corresponds to a situation
where there is perfect CAR of electron from wire 1 —2,2
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FIG. 6. (Color online) (a) y- and (b) Sy~ fixed points.

—3,3—1. On the other hand, ‘Cg_ corresponds to a situation
where there is perfect CAR of electron from wire 1 —3,3
—2,2— 1. The fixed point for one of these cases along with
the analogous fixed point for the normal junction is shown in
Fig. 6. Both these fixed points break time-reversal symmetry
and depend on the direction of the effective magnetic field
through the junction.

Next we calculate the scaling dimensions of all possible
operators around these fixed points, which are the following:
(i) AR in each wire, ;)0 ~ e'%1e!%i0; (ii) CAR between any
two wires, 1o~ e'%e’%io; and (iii) normal tunneling be-
tween the incoming chiral branches of any two wires,
Y~ e'®te=%i1. Analogous to the normal chiral case, the
scaling dimensions of all these operators turn out to be the
same and are given by 4g/(3g>+1) for both C3, and C .
Note that all the operators listed above are marginal for g
=1 and 1/3. Now let us compare these with the scaling di-
mension of all possible operators around the chiral fixed
point for the normal junction. The current splitting matrix for
the normal case just requires the replacement of —1 by 1 for
both the C3, and C;_in Eq. (16). The scaling dimensions of
all possible operators that can be switched on around either
of the fixed points are given by 4g/(3+g?). It is easy to
check that the scaling dimension of the operators around the
Syx- fixed point (represented by Ci, and C3 ) is related to
that of the operators around the normal chiral fixed point by
g« 1/g. This is as expected from the N-S duality relation
between the superconducting and the normal sectors. How-
ever, unlike the normal chiral fixed point which is stable for
1 <g<3 (attractive electrons hence unphysical), the Sy
fixed point is stable for 1/3 <g<1 (repulsive electrons); this
fact makes this fixed point experimentally relevant as this
fixed point can be stabilized even for very weakly interacting
electrons.

Now we consider the influence of charge-conserving op-
erators corresponding to tunneling of electron (z,b,-,dz}o
~ e!®%ie=1%j0) across the superconducting junction between
any two wires and normal reflection of electrons (’ﬂileo
~ ¢!%ile=1%i0) within each wire. The scaling dimensions of
both these operators are given by [2g(1+g%)]/(1+3g?), and
hence, these operators are relevant for g<<1. This means that
these fixed points are stable only within the superconducting
sector for 1/3<<g<1 but not in general. Hence the Sy.
fixed point can be relevant for experiments if one has weakly
interacting electrons; but for strongly interacting electrons
(g<1/3) the relevant fixed point would be the SDp fixed
point as long as normal reflection at the junction is reason-
ably weak.

We summarize the results of this section in Table I.
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TABLE I. Stability of some of the fixed points for different values of the interaction parameter g for N=1, 2, and 3 wires connected to

a normal junction and a superconducting junction are tabulated.

Normal junction

Superconducting junction

(a) N=1

Disconnected fixed point, DN, stable for g<<2
(b) N=2

Disconnected fixed point, DN,, stable for g<<1
Fully connected fixed point, stable for g>1

(c) N=3

Disconnected fixed point, DN;, stable for g<<1
Chiral fixed point, y-, stable for 1 <g<3

Dp fixed point, stable for g>3

(a) N=1

Andreev fixed point A, stable for g<<1/2

(b) N=2

Andreev fixed point A,, stable for g>1

Crossed Andreev fixed point, CA,, stable for g<<1

(c) N=3

Andreev fixed point, As, stable for g> 1

Supercond. chiral fixed point, Sy, stable for 1/3<g<1
SDp fixed point, stable for g<<1/3

D. Conductance matrix and N-S duality

As shown explicitly in the Appendix of Ref. 26, the con-
ductance tensor relating the current and voltage in different
wires can be computed from the Kubo formula and can be
related to correlation functions of the incoming and outgoing
currents. These correlation functions can be computed in
terms of the R;;(¢) matrix relating the incoming and outgoing
free fields. Note from Eq. (9), that this matrix is in general a
function of g.

So far, we have discussed the dualities existing between
the fixed points in the normal and superconducting sectors in
terms of scaling dimensions of various perturbations around
the fixed points. Now we can quantify the duality in terms of
the fixed-point conductances of the various fixed points in
the normal sector and the corresponding dual fixed points in
the superconducting sector.

Let RY represent the R matrix [which connects the free
incoming and outgoing fields and which has been defined in
Eq. (9)] for a fixed point in the normal sector. Then the R
matrix corresponding to the dual fixed point in the supercon-
ducting sector is given by

RS(g)=-RM(1/g). (17)

This can explicitly be checked from Eq. (9) when we make
the duality transformation, ‘Cij—> _Cij' In terms of the RN and
RS matrices, the conductance matrix is given by?°

2 2
GNz%(ﬂ—RN), (;Sz%(H—RS), (18)

where N and § stand for normal and superconducting cases,
respectively, and the identity factor just represents the in-
coming current along each wire. For the two-wire (NSN)
junction the stable fixed point within the superconducting
sector for g<<1 was found to be the A, fixed point. The R
matrix is identical to the C matrix for this case as C2=I, and
hence,

2
ge (1 1
G =—< ) 19
A=\ (19)

This implies that if the two wires (labeled 1 and 2) are biased
with respect to the superconductor at voltages V; and V,,

then for an injected electron current, (€*/h) V|, the junction
will suck in an electron current equal to (e?/h)V, from wire
2. Next let us consider the SDp fixed point for the three-wire
case. Here also as (2=1, the R matrix is identical to the C
matrix, and hence the conductance can be directly written
down using Eq. (18),

111
ngp=% 11 (20)
1

Sy

This is to be contrasted with the conductance matrix for the
Z; symmetric AG fixed point'® for the three-wire system
within the free-electron manifold obtained using WIRG
method given by

10/9 4/9 4/9

4/9 10/9 4/9 |,

4/9 49 10/9

2

<
h

62
~S _c 5
(’free-electron - h (]I + 5) -

(21)

where the elements of S are obtained from the S matrix for
the free-electron problem by taking squares of the absolute

values of individual elements themselves. This implies that S
is just the current splitting matrix for the free-electron case.

In Ref. 7, it was pointed out that for the normal junction,
the diagonal conductance for the Dp fixed point with Fermi
liquid leads, (‘G‘BP i=4€?/3h, was larger than its free-
electron counterpart 8¢>/9h for the Griffiths fixed point.> In
contrast, we find that this is no longer true for the supercon-
ducting case. The free-electron conductance for the AG fixed
point is 10e?/9h, which is actually larger than the diagonal
conductance for the SDp fixed point with Fermi liquid leads
given by (G‘;DP),-i=ez/ h. So in conclusion, electron-electron
interactions lead to either enhancement or suppression of
conductance with respect to its free-electron counterpart de-
pending on whether the junction is normal or superconduct-
ing.

Finally, we consider the conductance matrix for the Sy.
fixed point. For this case also, one can compute the conduc-
tance by evaluating the R matrices corresponding to the C3,
and C;_ [Eq. (16)] which are
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-1+g®  2g(l+g)  2(-1+g)
1+3g° 1+3g2 1+3g°
2(-1+g)g —1+g° 2(1+g)
Rex =| - 2 2 - 2 ,
S+ 1+3¢g 1+3¢g 1+3g
26(1+g)  2(-1+g)g —1+g°
1+3g? 1+3g? 1+3g>
(22)
-1+’ 2-l+glg  2g(l+g)
1+3g? 1 +3g? 1+3g?
28(1+g) -1+g° 2(-1+g)g
Re =| - 2 2 - 2
s 1+3¢g 1+3¢g 1+3g
2(-1+g)g  2g(l+g) -1+g°
1+3g? 1+3g? 1+3g?
(23)

Now the conductance matrix immediately follows from Eq.
(18). Unlike the case of SDp fixed point, the R matrix in this
case depends on the LL parameter g. Given this, one can
now explicitly check the duality as defined in Eq. (17) be-
tween the chiral fixed points for the normal junction and the
S - fixed points in the superconducting sector by comparing
the conductance matrix for Sy. fixed points with the con-
ductance matrix obtained in Ref. 7 for the normal chiral fixed
points.

Hence with all the explicit checks via the scaling dimen-
sions of operators and conductance calculations, we have
established N-S duality rigorously for junctions comprising
of one, two, and three wires. In general, the N-S duality
holds for junctions of any number of wires including those
with N>3.

III. DISCUSSION

In the context of three wires, both within the supercon-
ducting sector and in the normal sector, there are only two
independent bosonic fields connected to the junction since
the CM field is constrained either by charge conservation or
by the superconducting boundary condition. As in the super-
conducting two-wire junction, this implies that scale invari-
ance of the boundary condition leads to two one-parameter
families of fixed points, which are related by a Dglgz duality
transformation on one of the two independent fields. But for
the three-wire system the Dgl 0, duality transformation is not
a one to one map between the two one-parameter families of
fixed points. For example, for the superconducting three-wire
junction, when the Dal g, duality transformation is made on
the %(¢1—¢2) field, the A; fixed point (a representative of
the Cy family) goes to the SD fixed point (a Z; asymmetric
fixed point where two of the three wires are stuck at the CA,
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fixed point and the third wire is tuned to the A; fixed point
with the junction) fixed point which is in the ng family. But
when the duality transformation is made on the %((}51+¢2
—2¢s) field, the disconnected fixed point goes to the fixed
point given by the matrix,

23 13 -2/3
Ch=|-2/3 -23 13 |, (24)
P
13 -2/3 -2/3

in the Cy, family.

One of the most intriguing observations in the context of
junctions of LL in general is that in the g— 1 limit, all the
fixed points in the bosonic language which have entries zero
and unity in the current splitting matrix reduce to the fermi-
onic fixed points which have entries zero and unity in the
current splitting matrix (obtained from the free-electron S
matrix) which were obtained using WIRG formalism. The
scaling dimensions of all possible perturbations around these
fixed points also match in this limit. But this is not generally
true when the entries are not 0 and 1. For instance, the Dp
fixed point in bosonic language is not the same as the fermi-
onic Griffiths fixed point in the WIRG formalism, as neither
the conductance at the fixed point nor the scaling dimensions
of the operators around the fixed point match in the g— 1
limit even though they share the same Z; symmetry, and the
current splitting matrix for the Dp fixed point is identical to
the S matrix for the fermionic Griffiths fixed point.

Also from the N-S duality, we should expect the analogs
of the Dy and the M fixed points of Refs. 6 and 7 to exist in
the superconducting three-wire system, but a more detailed
analysis of these fixed points is beyond the scope of the
present work.

Last but not the least it is very interesting to note that all
the fixed points that we have considered in this paper are
noiseless (because there is no probabilistic partitioning of the
current) even though many of them do not correspond to the
perfectly transmitting or perfectly reflecting situations. This
is unlike the fermionic fixed point obtained using WIRG for-
malism where the Griffiths fixed point and the Andreev-
Griffiths fixed points had probabilistic partitioning of the cur-
rent and were noisy.
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